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Differential operators in graphical spin algebra 

E Elbaz and R Nahabetian 
Institut de Physique Nucleaire, UniversitC Claude Bernard Lyon-I and IN2P3, 
43 Boulevard du 11 Novembre 1918, 69621 Villeurbanne, France 

Received 21 January 1977 

Abstract. The graphical representation of the differential operators is given within the 
framework of graphical spin algebra. Application is made to the evaluation of their reduced 
matrix element exhibiting the great simplicity of the method. 

1. Introduction 

Graphical techniques are now extensively used in nuclear, particle and atomic physics 
since they have obvious value in conciseness, structural clarity and as a mnemonic and 
book-keeping aid (Stedman 1975, 1976, Harary 1969, Lehman and O’Connell 1973, 
Canning 1973, Briggs 1971, Judd 1962, Brink and Satchler 1968, Yutsis et a1 1962, 
Guichon 1975, Lulek 1975, Kibler and Guichon 1976). The graphical technique in 
angular momentum theory is an adequate illustration and we shall refer to it as the 
graphical spin algebra (GSA) and use the notations and conventions defined in Elbaz and 
Castel (1972). It concerns a development of the notations employed in different earlier 
published papers (Elbaz et a1 1966a, b, c, 1967). The main difference comes from the 
introduction of a graphical representation of a ket by a simple arrow (outgoing for a 
positive magnetic momentum) and of a bra by a double arrow (ingoing for a positive 
magnetic momentum). Such a representation greatly simplifies the phase determina- 
tion and allows a direct representation of a Clebsch-Gordan coefficient by a triangle at 
a node (the orientation of which does not matter). A practical digest of the GSA can be 
found in Elbaz and Castel (1971). Our notation differs from that of Stone (1976) by the 
fact that the ( - 1 ) j p m  phase is always contained in the second arrow of a bra while a 
simple node on a ;-line brings the factor (2; + l)-’’’. Moreover, in the GSA a triangle 
node is always attached to a Clebsch-Gordan coefficient. Recently Danos and Gillet 
(1971) have used the graphical technique previously proposed by Danos (1971) to 
evaluate some specific reduced matrix elements of differential operators. Thus it 
appeared that the GSA could be a powerful tool to solve such a problem and this paper 
gives the graphical representation of the usual differential operators, shows that indeed 
one can easily obtain some well known results concerning these operators and, 
moreover, allows a straightforward evaluation of the reduced matrix element of any 
differential operator. It will certainly be of great help in relativistic nuclear theory for 
instance. We recall in § 2 the standardization of the vector operators and give the 
graphical equivalent of a vector and of a tensor product constructed with two vector 
operators. In 9 3 we define the diagrammatic equivalent of the usual differential 
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1064 E Elbaz and R Nahabetian 

operators grad, div, curl, etc. We then show how to apply the Wigner-Eckart theorem 
to these operators and finally we give some interesting applications in the evaluation of 
the reduced matrix elements of these operators. 

2. The standardization of the vector operators 

2.1. Definitions 

It is well known (Edmonds 1957) that one can define the standard components of a 
vector operator A as the components A, of a rank-one irreducible tensor operator 

= - - (Ax 1 +iA,) 
J 2  

1 
= 3 ( A x  -iAy). 

Graphically these components will be represented by 

This representation is in fact a generalization of the graphical representation of the 
spherical harmonics and identical to the representation of any irreducible tensor 
operator (ITO) Tkq as proposed in the GSA. (Elbaz et a1 1966a, b, c, 1967, Elbaz and 
Caste1 1971, 1972). 

One then obtains the n k q  tensorial product of two vector operators with 

with k = 0, 1,2.  

2.2. The scalar product 

If one sets k = 0 in the previous diagram, one obtains the value 

If one uses the definition (2.1) of the standard components one reads 
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We note here that if one uses Biedenharn’s definition of the standard components of a 
tensor operator (Biedenharn and Rose 1953), 

1 
A ,  = z ( - i A x  +A,) 

A. = iA, 

1 
A-l =-(iA, +A,), 

42 

the minus sign goes out and one reads 

A . B = a - ! - f i  

but let us use, as is done commonly, Edmond’s conventions. 

2.3. The vector or cross product 

One sets the k = 1 value in the IIkq definition and gets, for instance, 

1 n - - ( A I B ~ - A ~ B , )  =;(A,& -A,B,)+$(A,B, -A,B,) J2 

or, if one introduces the vector product C = A X B, one finds that 

1 1 II - -(Cy - iC,) = - C1 “ - 2  J 2  

I 1 n - c, = ClO 
I O 7 5  Jz 

1 1 rI1-] =-(Cy +iC,)=-C,-,. 2 J2 

In other words 

= z ( A  1 X B ) i q  = < A .  

rs 
What happens with this representation if A = B = r? 

(2.7) 

(2.8) 

the closure relation of the spherical harmonics, one gets, after integration over the 
angular variable, 
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The circle symbol is the reduced matrix element of the YIP spherical harmonic 

and one finds what we expected, namely 

( r  x r ) ,  = dt = 0. 
I\ t 

(2.10) 

(2.11) 

One other interesting application of the same technique concerns the cross product of 
the J kinetic momentum operator. In that case the closure relation reads 

(2.12) 

and the reduced matrix element takes the value 

(J/lJ(l)llJ) = J[J(J+ 1)(2J+ l)] = d 6  when J = 1. (2.13) 

Collecting these results leads immediately to the well known relation 

More generally we can assert that the commutator of two vector operators A and B is 
graphically represented by the diagram (2.8). If A and B commute, a change of the 
lecture order at the pole must not affect the results while the usual rule brings a minus 
sign. The diagram must thus have a zero value. Such a result will be used later on. 

2.4. The triple scalar product 

The definitions (2.4) and (2.8) of the scalar and cross products allow an easy graphical 
representation of a triple scalar product: 

A .  ( B  x C )  = iJ2 A dB=i& A<g. (2.15) 
\(2 (2 

It represents the volume of the parallelepiped having A, B and C a s  three of its edges. 

2.5. The double cross product 

As previously done we obtain the diagrammatic representation of the double cross 
product by twice applying the definition (2.8): 

(2.16) 
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3. The differential operators 

3.1. The symbolic vector gradient 

The equation 

c l a a  
dX a y  az 

V = i ~ + j - +  k- 

defines the vector differential operator V. Its standard components follow 
immediately: 

(3.1) A 14 

The gradient of a scalar function f(x, y ,  z )  is 

v ,=v- .  

df  af af 
ax a y  az 

Vf = grad f = i-+ j -+  k- 

which reads graphically as 

(Vf), = ef 2. 
3.2. The divergence 

div V =  V. V =  - $1 9. 

3.3. The curl or rotation 

3.4. The Laplacian operator 

(3.4) 

(3.5) 

3.5. The divergence of a curl and the curl of a grad 

Let us first consider the divergence of a curl and set its diagrammatical representation: 

I r e  

divcurl V = V . V A V = - ~ + - ~  

We expand this diagram and obtain easily 

divcurl V = c  ( - 1 ) 4 V 1 - q ( l ~ 1 v ( 1 ~ ) ~ ~ , , V ~ . .  
4 

We note that the following Clebsch-Gordan (CG)  coefficients vanish: 
(1 -1 1 211 l ) ,  (1 0 1 011 O)and(l  1 1 -211 1). Thusweget 

divcurl V = ( l  1 1 011 1)@-1V1VO-V-1VoV1) 

- ( 1  1 1 -111 o)@ov1v-1-vov-1v1) 

+(1 -1 1 011 -l)@1v-1vo-vlvov1). 
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It turns out, after evaluation of the CG coefficients, that 

div curl V =  6 < = 0. 
i. 

The definition of the curl of a grad exhibits an analogous diagram: 

(curl grad), = -id2 4 6  

(3.7) 

Since the previous diagram shown in (3.7) vanishes for any value of V we find that 

Such a result is effectively obtained by a direct evaluation of the diagram since a change 
of a lecture order must not affect the diagram while it appears that the sign is changed. 

3.6. The curl of a curl 

We use the graphical representation (2.16) of a double cross product to get 

- + y ( v  Iq I A =-6 "+$ 

i t 1 6  +y-- v. 
(curl curl V), = -2 ~ 

(3.10) 
I '  1 1 

hQ '1 
I 'I 0 

One can evaluate explicitly the last diagram using the 3-jm coefficients: 

1 1  (curl curl V), = -6 (-l)( 
p YTU 

(3.11) 

with q = p + +U and p, 7, U = q. We set, successively, p or 7 or IJ equal to q and 
replace the remaining 3-jm coefficients by their values to get 

(curl curl VIq = V, (- V I  V-, - V-l VI + Vo Vo) - (-  VIV-,  - V-,V1 + V;)V,. (3.12) 

We recognize in the right-hand side of equation (3.12) the standard component of 
V(V . V) - (V . V) V, thus we get the well known result 

curl curl V = V(V . V) - (V . V) V. (3.13) 

3.7. A n  application of the GSA 

Let us now use the above result and the recoupling technique of the GSA to define two 
special new ITO of rank one: 

(3.14) (curl curl V), = -6E = -6 
$ 4 2 6  
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We introduce intermediate momenta to get 

(3.15) 
YY’  

E =  2 
xx’ 9 

A pinch on the XX’ and YY‘ lines yields the result 

(3.16) 

We note here that X can take the value zero, and the remaining diagram becomes 

$ - L e  +A =(V.V)V,.  

The X intermediate momentum cannot take the value one since the corresponding 
diagram is zero following (3.9). We are thus left with the following: 

It corresponds to the rank-one OTI: 

The same procedure applied to the Y intermediate momentum gives 

4. Application of the Wigner-Eckhart theorem 

4. I .  Definition 

Let us first recall the Wigner-Eckart theorem in its graphical form: 

(a’j’m’l T‘, lajm) 

= d f(a ’j’m’l Tj?Tk, ( f)( ?lajm) 

(3.17) 

(3.18) 

(3.19) 

(4.1) 
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A comparison between the equations (4.1) and (4.2) defines the graphical symbol of the 
reduced matrix element of the Tkq tensor operator: 

P 

We can thus recall some of the usual reduced matrix elements and especially those of 
the gradient: 

If one defines the q5Lm(r) wavefunction as 

=f f ( r )  Y / m  (% 
since 

1 rm = J & r ) r ~ ~ , , ,  

one obtains the following reduced matrix elements: 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

4.2. Reduced matrix element of the kinetic momentum operator 

One knows the matrix elements of the kinetic momentum operator considered as a 
rank-one irreducible tensor operator since 

U, = (d '" '~L$#P)  (4.12) 

gives the standard components 

1 im - 1 
U1 =(4yL;14 /m)  = -3 (4" ' / t+J4  ) - -- 6/19 Sm"+lXm 

( ~ ~ " ' l L - l # P )  =Jz SIi, 8 m " - 1 X m - 1  

J 2  

U, = ( + " " I L ~ I ~ ' ~ )  = ( ~ ' " ' / L ~ I + ' ~ )  = m 8,,, s,,. (4.13) 

1 1 
U-, = (q5i 'm' /Lq4~m) = 75 
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with 

xm = J[(1- m)(l + m + l)]. 
Let us now use the graphical representation of the kinetic momentum operator to 

reach the matrix element 

(4.14) 

(4.15) 

The Wigner-Eckart theorem is applied to the L, tensor operator and one easily obtains 

/ Im 

with 

(4.16) 

(4.17) 

(4.18) 

The selection rules applied to the 6-j coefficient exhibit the only value 1 ' =  1 while 
A = 1 f 1. One can then use the (4.10) and (4.1 1) values of the reduced matrix elements 
and the explicit values of the 3-j0 and 6-j  symbols to get the reduced matrix element 

As expected this reduced matrix element has been already obtained in (4.5). Bringing 
(4.19) into (4.16) leads to the matrix elements U, as expressed in (4.13). 

5. Particular cases with spherical Bessel functions 

One can always expand a radial wavefunction on a spherical Bessel function basis 
(Glendenning and Nagarajan 1974, Nahabetian, private communication, Charlton 
1973) 

The reduced matrix elements of the differential operators between these functions must 
thus play a prominent role and it is essential to evaluate them. 
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5.1. Reduced matrix element of the gradient 

When we use (4.1 1) with f =j l (pr )  we easily get the value 

IT 
( j l , (p’r ) l lv l l l j / (pr ) )  = -6 ( p ’  - P ) W r  (5.2) 

2P 
with 

5.2. Closure relation 

It is often necessary to introduce a closure relation with the spherical Bessel functions to 
handle the Wigner-Eckart theorem. Therefore we first recall the orthonormalization 
of these functions: 

If we combine it with the closure relation of the spherical harmonics we get 

2 
6 ( r  - r’)  = 1 - p 2  dp jl 

j1 (pr)y lm( i )=dLm(r)  = pr% (5.6) 

Y / m  ( i ) j ,  ( p r ’ )  Ylm (if). (5.5) 
im IT 

We set 

and the closure relation reads 

2 1 
6 (r - r’)  = 1 - [ p 2  dp pr k+-- pr ’. (5.7) 

/ I T  

5.3. Reduced matrix element of the divergence 

The definition (4.3) of a reduced matrix element and (3.3) of the divergence leads to the 
following: 

(4i.11 div Vll4;) = - [ d r  $1 9. (5.8) i‘“ 
We introduce the closure relation (5.7) and integrate over r and r’: 

<4ZII div Vll4;) 

dr  dr‘S(r  - r ’ )  

(5.9) 
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Using spherical Bessel functions and the reduced matrix element of the gradient 
operator we get finally, 

L 

We can evaluate the aIL coefficient from (5.3) and we 

MPfr ) I l  div Vlli,(pr)) 

find 

5.4. Reduced matrix element of the curl 

The same procedure gives the reduced matrix element of the curl in the form 

(4;,llcurl WJ;> 

(5.11) 

After insertion of the explicit values of the ieduced matrix element of the gradient and 
of the 6- j  coefficient we are left with 

(5.13) 

5.5. Reduced matrix element of the Laplacian 

When we introduce the spherical form of the Laplacian operator 

v2=--r 1 d 2 d  1(1+1) 
r2dr  dr r 2  

its reduced matrix element reads 
m 

( 4 ~ , ( l V 2 1 1 ~ ~ )  = I r 2  dr 4L*(r)V24;(r )  
0 

and its graphical determination follows the procedure previously described 

1' , p f r  
(4$/lV2114~) = - [ dr  Y, 9-1- 9 

' \lpr 

(5.14) 

(5.15) 
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When the C $ i ,  and +A are spherical Bessel functions, the reduced matrix elements of the 
gradient are expressed by (5.2) and a great simplification follows: 

(i,,(p’r)llv2Jlil(pr)) 

The sum over L is easily evaluated as (-1)’+’[12] and one finds 

It is easy to get the same result by applying the Laplacian operator to a plane wave and 
thus evaluating 

(5.17) e-ip’.rv2 eip.r - - -(2T)3p2 I 
5.6. Reduced matrix element of the curl of a curl 

(C$;,llcurl curl v ( ~ + A )  
= - 2  I d r -  <,;r y 

(5.18) 

(5.20) 
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If one inserts the explicit value of the reduced matrix element of the gradient taken 
between the spherical Bessel functions one finds 

(+:,/Icurl curl ~114;) 

(5.21) 

With spherical Bessel functions this result simplifies into 

(jdp’i-)Il curl curl Vllil(pi-)> 

(5.22) 

It can be noted that such a graphical representation of the differential operators within 
the GSA framework may be particularly useful when dealing with the electromagnetic 
field and the Maxwell equations. 

Appendix 

We use the GSA rules to obtain easily 

( A .  C ) ( B .  0 )  = . (A . l )  

Since X =  0, 1 and 2 it  follows that 

( A . C ) ( B . D ) =  $i+-!-B e ~ (A.2) 

When [A, B] # 0, [C, D ]  # 0 and [A, C] = [B, 03 = 0 all the diagrams have a non-zero 
value and we get the analytical equivalent of (A.2): 

( A .  C ) ( B . D ) = 4 ( A . B ) ( C . D ) + t ( A  X B ) . ( C X D ) + T 2 ( A , B ) .  T2(C,D) .  (A.3) 

The above equations define the graphical equivalent of the scalar product of two 
rank-two tensor operators: 

Tz(A,  B )  T2(C, D )  = 

= ( A .  C) (B .  D )  - ; (A .  B) (C .  D )  -$(A X B )  . (C X D )  

(i) A = B = J , , C = D = J Z  
1 2 2  T2(J1, 5 1 ) .  T2(J2, J ~ = ( J I  J d 2 - d i J 2 + ; J i  J 2 .  
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( i i )  C = D  =a, T2(a, a)  = 0, as can be seen directly on the components of this 
rank-two tensor operator 

O =  (a .  A ) ( ~ .  B ) - ; ( A .  B ) ~ ~ - ; ( A  X B )  . (a x u ) .  

We use the fact that u2 = 3 and a x U =  2 i a  to reproduce the well known relation 

(a ,  A ) ( a .  B )  = A ,  B +ia. ( A  XB) .  (A. 6) 

(iii) A = S 1 , B = S 2 , C = D = r  

T * ( S ~ ,  S 2 )  . T2(r , r )  = (SI . r)(s,. r)-$(s l  . s2)r2. (A.7) 

We can simplify the T2(r, r )  tensor since r I p  = J($r)rYIp(i):  

We express the triad with its reduced matrix element 

As usual we set 

If we introduce the 'tensor force' 

we easily see that 

(h s,, = - (A. 11) 
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